Existence Results for a p(x)-Kirchhoff-Type Equation without Ambrosetti-Rabinowitz Condition

نویسندگان

  • Libo Wang
  • Minghe Pei
چکیده

After the excellent work of Lions [2], problem (2) has received more attention; see [3–10] and references therein. The p(x)-Laplace operator arises from various phenomena, for instance, the image restoration [11], the electro-rheological fluids [12], and the thermoconvective flows of nonNewtonian fluids [13, 14].The study of thep(x)-Laplace operator is based on the theory of the generalized Lebesgue space

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a p(x)-Kirchho equation via variational methods

This paper is concerned with the existence of two non-trivial weak solutions for a p(x)-Kirchho type problem by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland's variational principle and the theory of the variable exponent Sobolev spaces.

متن کامل

Solutions of a Nonlocal Elliptic Problem Involving p(x)-Kirchhoff-type Equation

The present paper deals with a Kirchhoff problem under homogeneous Dirichlet boundary conditions, set in a bounded smooth domain Ω of R^{N}. The problem studied is a stationary version of the orig inal Kirchhoff equation, involving the p(x)-Lap lacian operator, in the framework of the variable exponent Lebesgue and Sobolev spaces. The question of the existence of weak solutions is treated. Appl...

متن کامل

Ground States for Fractional Kirchhoff Equations with Critical Nonlinearity in Low Dimension

We study the existence of ground states to a nonlinear fractional Kirchhoff equation with an external potential V . Under suitable assumptions on V , using the monotonicity trick and the profile decomposition, we prove the existence of ground states. In particular, the nonlinearity does not satisfy the Ambrosetti-Rabinowitz type condition or monotonicity assumptions.

متن کامل

On superlinear problems without Ambrosetti and Rabinowitz condition

Existence and multiplicity results are obtained for superlinear p-Laplacian equations without the Ambrosetti and Rabinowitz condition. To overcome the difficulty that the Palais-Smale sequences of the EulerLagrange functional may be unbounded, we consider the Cerami sequences. Our results extend the recent results of Miyagaki and Souto [ J. Differential Equations 245 (2008), 3628–3638].

متن کامل

2 01 0 N - Laplacian equations in R N with subcritical and critical growth without the Ambrosetti - Rabinowitz condition

Let Ω be a bounded domain in R . In this paper, we consider the following nonlinear elliptic equation of N -Laplacian type: (0.1) { −∆Nu = f (x, u) u ∈ W 1,2 0 (Ω) \ {0} when f is of subcritical or critical exponential growth. This nonlinearity is motivated by the Moser-Trudinger inequality. In fact, we will prove the existence of a nontrivial nonnegative solution to (0.1) without the Ambrosett...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013